关于微积分在物理的运用两根平行的水平导轨上放置一根r=0.5Ω的导体棒,导体棒的质量m=0.1kg,与导轨之间的动摩擦因数μ=0.5,导轨两端接R=1.5Ω的电阻,不及一切其他电阻.现用F=0.7N的恒力拉动导

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/09 20:54:58
关于微积分在物理的运用两根平行的水平导轨上放置一根r=0.5Ω的导体棒,导体棒的质量m=0.1kg,与导轨之间的动摩擦因数μ=0.5,导轨两端接R=1.5Ω的电阻,不及一切其他电阻.现用F=0.7N的恒力拉动导

关于微积分在物理的运用两根平行的水平导轨上放置一根r=0.5Ω的导体棒,导体棒的质量m=0.1kg,与导轨之间的动摩擦因数μ=0.5,导轨两端接R=1.5Ω的电阻,不及一切其他电阻.现用F=0.7N的恒力拉动导
关于微积分在物理的运用
两根平行的水平导轨上放置一根r=0.5Ω的导体棒,导体棒的质量m=0.1kg,与导轨之间的动摩擦因数μ=0.5,导轨两端接R=1.5Ω的电阻,不及一切其他电阻.现用F=0.7N的恒力拉动导体棒,B=2T的磁场垂直电路面,求导体棒静止到匀速的用时,以及位移
棒长0.5m

关于微积分在物理的运用两根平行的水平导轨上放置一根r=0.5Ω的导体棒,导体棒的质量m=0.1kg,与导轨之间的动摩擦因数μ=0.5,导轨两端接R=1.5Ω的电阻,不及一切其他电阻.现用F=0.7N的恒力拉动导
此题属于高中物理,但是,题目的问题却超纲了,此题应该给出运动时间,不应该求达到匀速的时间,更不能求位移,因为时间是无穷大,位移也无穷大.
一般高中用微积分的方法求解,浅浅的双色石已经帮你提供一个很好的思路,他用了平均电流的方法解决了,不过用“平均”的方法求,一定是一次函数才可以(F=BIL,F和I是一次函数,所以可以,至于为什么你不用管,要证明这个,也要用微积分证明,电荷Q=It也可以用平均电流,冲量I=Ft,也可以用平均力,因为都是一次函数,但是有效值是不能用“平均”求解的,因为有效值Q=I²Rt,Q和I不是一次函数),此外,你这道题还要求求时间,我怀疑你弄错了,时间是求不出来的(因为这个运动不可能匀速运动,除非时间无限大,由于此题不可能达到匀速运动,所以如果求匀速运动).
不知道你为什么会提到用微积分,要用微积分,解微分方程是很麻烦的,你这个题的微分方程,虽然解出来不难,不过高中尽量不要考虑用微积分,下面我列微分方程解.同时,我也证明开始我说的结论,我说达到匀速的时间是无穷大,达到匀速的位移也是无穷大,如果你看不懂就算了,不过我还是把解法写下来.
设在t时刻,导体的速度是v,那么有安培力F(安)=B²L²v/r,根据牛顿第二定律,可得
F-μmg-B²L²v/(R+r)=m·dv/dt,这是一阶线性微分方程,有通解公式,下面我用分离变量方法求解,为了方便计算,设p=(F-μmg)/m,q=-B²L²/m(R+r),那么微分方程可化为
dv/dt=p+qv,分离变量,得dv/(p+qv)=t/q,积分,ln(p+qv)=t/q+C(C为任意常数,因为dv/dt>0,所以p+qv>0,所以绝对值直接去掉),初始条件,t=0时,有v=0,代入ln(p+qv)=t/q+C,可求得C=lnp,所以有t/q=ln(p+qv)-lnp=ln(1+qv/p),两边分别以e为底数取指数,得
1+qv/p=e^(t/q),所以v=-(p/q)·[1-e^(t/q)],
把p和q代回来,得v=[(F-μmg)(R+r)/B²L²]·{1-e^[-m(R+r)t/B²L²]},这个就是v和t的函数关系式,
从关系式可知,当t→∞时,v=(F-μmg)(R+r)/B²L²,也就是说,时间无穷大,才能达到匀速的速度,所以此题不应该问时间怎么求.可以求出匀速速度是v=(F-μmg)(R+r)/B²L²
再次对t积分,就可以求出位移s和t的关系,这个积分没有前面解微分方程难,不过计算也挺繁琐,这里我就不计算了,你如果有兴趣,以后学了微分方程可以自己算(或者你现在就明白微分方程也可以解).求出表达式后,当t无穷大时,位移也是无穷大(具体我没算,不过我用p和q把位移表达式求出来了,根据表达式,得到位移无穷大).

棒在磁场中的相对长度呢?

用F=0.7N的恒力拉动导体棒,经过2s之后导体棒匀速运动,可以列式
F-μmg-IBL=0,
得到BL=(F-μmg)/I,
此时电压表的示数为0.3V,I=U/R=0.3V/1.5Ω=0.2A,电动势E=U+Ir=0.3V+0.2A×0.5Ω=0.4V,
BL=(F-μmg)/I=(0.7N-0.5×0.1kg×10m/s²)/0.2A=1N/A,

全部展开

用F=0.7N的恒力拉动导体棒,经过2s之后导体棒匀速运动,可以列式
F-μmg-IBL=0,
得到BL=(F-μmg)/I,
此时电压表的示数为0.3V,I=U/R=0.3V/1.5Ω=0.2A,电动势E=U+Ir=0.3V+0.2A×0.5Ω=0.4V,
BL=(F-μmg)/I=(0.7N-0.5×0.1kg×10m/s²)/0.2A=1N/A,
设导体棒匀速运动时的速度为v,有E=BLv,于是
v=E/BL=0.4V/1N/A=0.4m/s,
导体棒加速过程中,电流是变化的,设平均电流为I*,加速时间为t,位移为x,那么由动量定理和动能定理
(F-μmg-I*BL)t=mv-0,
(F-μmg-I*BL)x=0.5mv²-0,
其中t=2s,代入数据,得
通过某一横截面的电荷量Q=I*t=0.36C, x=2.5m
正如所说,“位移的求法......不能用平均电流列方程”,因为平均电流是时间上的平均值,用于位移是不对的,可是,对于高中,还不要求用微积分求解,怎么办,我想到的办法是:
平均电流I*=E*/(R+r)=BLv*/(R+r)=BL(x/t)/(R+r),
其中E*是平均电动势,v*是平均速度,v*=x/t,上式两边乘以t,得
I*t=BLx/(R+r),
即x=I*t(R+r)/BL=Q(R+r)/BL=0.72m,
这样就避免用到微积分了。

收起

关于微积分在物理的运用两根平行的水平导轨上放置一根r=0.5Ω的导体棒,导体棒的质量m=0.1kg,与导轨之间的动摩擦因数μ=0.5,导轨两端接R=1.5Ω的电阻,不及一切其他电阻.现用F=0.7N的恒力拉动导 高二物理电动势题目两根平行导轨放在水平桌面,导轨每米电阻0.1欧姆,导轨两端的连线电阻可忽略,导轨间距离0.2米,磁场B=kt,k=0.02T/s,金属杆可在导轨上无摩擦滑动,滑动中与导轨垂直,t=0时,金属 急--一道物理电学题在水平面上有两条平行金属导轨,导轨间距为d,匀强磁场垂直于导轨所在平面向下,磁感应强度大小为B,两根金属杆间隔一定的距离摆放到导轨上,且与导轨垂直,两金属杆质量 物理电磁感应两根平行导轨M,N水平固定在一个磁感应强度为B方向竖直向上的匀强磁场中,两根相同导棒AB垂直导轨放置,他们的质量都为m,电阻都为R,导棒与导轨接触良好,导轨电阻不计,导体棒 如图所示,在水平面上固定两根相互平行的金属导轨MN,PQ,在导轨上固定两根导体棒ab,cd,整个装置处于 如图所示,在水平面上固定两光滑的长直平行金属导轨MN,PQ,导轨间距离为L 物理菜鸟求救!如图所示,两平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动.ab、cd两棒的质量之比为2∶1.用一沿导轨方 关于楞次定律的问题,水平面上放置两根平行的光滑金属导轨,金属导轨左边连通,在其上搁置两根金属棒ab和cd,ab在cd右边,它们能在导轨上自由滑动,整个装置放在竖直向下的匀强磁场中,考虑电 19、如图3—16所示,两根平行的光滑金属导轨水平放置在竖直向下的匀强磁场中,导轨间距离为L,导轨的左端串联一个电阻R,在导轨上有一个质量为m的金属棒MN,它的电阻为r,与导轨接触良好,导轨 9、如图3—16所示,两根平行的光滑金属导轨水平放置在竖直向下的匀强磁场中,导轨间距离为L,导轨的左端串联一个电阻R,在导轨上有一个质量为m的金属棒MN,它的电阻为r,与导轨接触良好,导轨 高考物理电磁感应 如图,两根相距d=1m的平行金属导轨OC、O'C'水平放置于匀强磁场中 ..两根水平平行固定的光滑金属导轨间距为L,足够长,在其上放置两根长也为L且与导轨两根水平平行固定的光滑金属导轨间距为L,足够长,在其上放置两根长也为L且与导轨垂直的金属棒ab和cd,它 物理磁场中的金属棒运动问题两根相距L=0.2m的平行金属导轨固定于绝缘板上,它们的一部分水平,另一部分与水平方向成30度角,两根金属棒的质量均为O.OO2kg,它们可以在导轨上滑动,金属棒与导 一道物理电磁题,一道模拟题如图所示,两根竖直放置的光滑平行导轨,其中一部分处于方向垂直导轨所在平面并且有上下水平边界的匀强磁场中.一根金属杆MN保持水平沿导轨滑下(导轨电阻不 如图甲所示,光滑且足够长的平行金属导轨MN PQ固定在同一水平面上 两导轨间距L=0.2m 导轨如图甲所示, 光滑且足够长的平行金属导轨MN PQ固定在同一水平面上 两导轨间距L=0.2m 导轨电阻忽略不 23M/S 15W13.两根相距d=0.20m的平行光滑金属长导轨与水平方向成30°角固定,匀强磁场的磁感强度B=0.20T,方向垂直两导轨组成的平面,两根金属棒ab、cd互相平行且始终与导轨垂直地放在导轨上,它们 如图,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不记,导轨见的距离l=0.20m,两根质量均为m=0.10kg的平行金属杆甲,乙可在 物理问题,帮忙解答.谢谢啦如图所示,光滑足够长的平行导轨MN和PQ固定在同一水平面上,两导轨艰巨L=0.2m,电阻R=0.4Ω,导轨上静止放置一质量m=0.1kg,电阻r=0.1Ω的金属杆,导轨电阻忽略,整个装置处在