数论证明题: {[(c*a) mod p] * b} mod p = {[(c*b) mod p] * a} mod p其中p是任意质数,c是非零常数,且小于P, a,b任意,但非零且小于p.

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/05 15:06:37
数论证明题: {[(c*a) mod p] * b} mod p = {[(c*b) mod p] * a} mod p其中p是任意质数,c是非零常数,且小于P, a,b任意,但非零且小于p.

数论证明题: {[(c*a) mod p] * b} mod p = {[(c*b) mod p] * a} mod p其中p是任意质数,c是非零常数,且小于P, a,b任意,但非零且小于p.
数论证明题: {[(c*a) mod p] * b} mod p = {[(c*b) mod p] * a} mod p
其中p是任意质数,c是非零常数,且小于P, a,b任意,但非零且小于p.

数论证明题: {[(c*a) mod p] * b} mod p = {[(c*b) mod p] * a} mod p其中p是任意质数,c是非零常数,且小于P, a,b任意,但非零且小于p.
象c mod p代表的是一个集合,并不是指c除以p的余数.
所以题目中的符号有点乱.
人猜本意是:
c*a*b=c*b*a ( mod p)
显然.

数论证明题: {[(c*a) mod p] * b} mod p = {[(c*b) mod p] * a} mod p其中p是任意质数,c是非零常数,且小于P, a,b任意,但非零且小于p. 初等数论同余问题p为质数,0<a<p,证明x≡b×(-1)∧(a-1)×(p-1)···(p-a+1)/a!(mod p)是 同余式 ax≡b (mod p)的解 基础数论的两道证明题,麻烦大家帮下忙,1.已知P是一个正整数,P和2P+1都是质数并且P≡3 mod 4证明:2^(p)≡1 mod 2p+12.令P是个不等于13的质数证明:存在一个X使得X^2≡13 mod p当且仅当P≡1,3,4,10或者1 问道初等数论数论的题证明:如果ax^2+by^2=c有一个整数解,那么gcd(a,b)|c.然后再反过来证明. 费尔马小定理中的mod是神马数论初学者.请问a^p≡a(modp)是什么意思 初等数论证明:x^b=x mod p 解的个数证明 x^b = x mod p 的解的个数是 gcd(b-1,p-1).50分送上. 数论 x^2 ≡ -n (mod p)有整数解 证明:x^2 ≡ -4n (mod p)有整数解若n为整数,p为奇质数x^2 ≡ -n (mod p)有整数解证明:x^2 ≡ -4n (mod p)有整数解 acm数论题目 a^b^c mod 1000000007 如何快速幂.数据范围三个数都小于 1000000000. 一道证明题,100分,设k为(mod p)的原根a) 证明(p-1) ! = [k * k^2 * k^3 * ... * k^(p-1)] (mod p) b) 利用a)证明(p-1) ! = -1 (mod p)谁帮个忙,做出来再加100 初等数论问题性质1:a≡b(mod mj),j=1,2,3,4,.k,同时成立的充要条件为:a≡b(mod [m1,m2,.mk])证明:641|2的32次方+1还有一题:证明不定方程 x平方+2y平方=203 数论 欧拉定理证明 为何要整个完全剩余系的数相乘aφ(n) * x1 * x2 *...* xφ(n) mod n ≡ x1 * x2 * ...* xφ(n) mod n 初等数论伪素数的定义为什么不带p不 整除a,感觉不恰当?费马小定理原话 是“若p是素数,且p不整除a,则a∧p-1 ≡1(mod p)”,显然我认为人们好奇的 是当p不整除a且a∧p-1≡1(mod p)是p 也可能为合数 再求几道”初等数论”的详解.1.求13^2006的个位码.2.设素数P≥5,证明P^2Ξ1( mod24)3.证明:若P为素数,证明:(P-1)!ΞP-1(mod p(p-1)) 二次剩余问题 数论若同余式 x^2≡a(mod p),p=8m+1有解,并且已知N是模P的平方非剩余,试举出上述同余式的一个解法 有关数论的基础性问题~1.若ac同余于bc(mod m) 则当(c,m)=1时,a同余于b(mod m)2.ac同余于bc(mod mc) 则 a同余于b(mod m)请问这两条不是矛盾吗?X同余于3 (mod 4)且X同余于9 (mod 25)若a同余 a对模m的数论倒数是什么意思?a-1≡(mod m)-1是次数 怎么证明费马小定理?证明:假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p) 同余式a≡b(mod m)成立,a²≡b²(mod m)成立吗?如何证明?如题